Permanent magnets, but also magnets generated by coils, generate strong static magnetic fields, which can amount to several teslas in the core. NMR magnets belong to this category, among others.
NMR spectroscopy is a method for investigating the electronic environment of individual atoms and their interactions with neighbouring atoms. The sample is placed in a strong, static magnetic field caused by a current-carrying coil.
To reduce the strong magnetic fields of such DC magnets, stray field shields with high saturation must be used. This limits areas around the magnets to <5 Gauss (500µT), which is the prescribed limit for electrical implants such as pacemakers. However, the application is not only limited to adhering to the 5 Gauss line, but also depends on the customer’s specifications. In the field of biological research, for example, values in the order of magnitude of the earth’s magnetic field, i.e. 50µT, are often required so that biological experiments can be carried out in a “natural” environment.
With stray field shielding, the fields of strong magnets, caused by unshielded and shielded NMRs, are effectively reduced. Pure iron, which has a high saturation flux density, is usually used as shielding material for strong magnetic DC fields.
The thickness of the material and the required shielding area is determined by the Finite element method (FEM) simulations. Compared to alternating field shielding, DC shielding is typically much thicker and correspondingly heavier.
Request licence for the Edison – Low Frequency software
If you are interested in a licence for the Edison - Low Frequency software, please contact us directly.
Download Software Edison – Low Frequency
The download link for the software will be sent to you by email. There are no costs and you do not enter into any contractual obligations. Without an active licence, the software is automatically operated in demo mode, which is unlimited in time. In demo mode, however, the simulations are not calculated correctly and projects cannot be saved. Otherwise the software is fully functional.
This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.
If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.